1.智能电网教育部重点实验室(天津大学),天津市 300072;2.天津市智慧能源与信息技术重点实验室(天津大学),天津市 300072
园区综合能源系统(PIES)参与碳交易时面对碳交易价格、能源价格长期不确定性以及可再生能源短期不确定性的多重冲击,如何在有限的总成本预算下通过优化配置PIES各设备容量提高系统的鲁棒性,即应对不确定性波动的适应性问题有待进一步研究。因此,提出了基于信息间隙决策理论(IGDT)-效用熵的PIES优化配置方法。首先,建立基于能源集线器的多能流与碳交易量耦合模型,用于描述碳交易量与多能流间的耦合关系。接着,建立确定性的PIES优化配置模型,以得到优化配置总成本的基准值,进一步考虑PIES决策者可接受额外投资的能力,以确定总成本预算限额;针对两类不确定性,利用IGDT处理碳交易价格与能源价格的长期不确定性,利用效用熵模拟风光出力的短期不确定性。然后,引入鲁棒性系数描述PIES对不确定性波动的适应性,在总成本不超过预算限额的前提下,建立以最大化鲁棒性系数为目标的优化配置模型,用于提高PIES对不确定性波动的适应性,求解得到总成本预算下的优化配置方案。最后,以中国北方某PIES为例,验证所提PIES优化配置方法的有效性。
国家自然科学基金资助项目(52222704,52177107)。
穆云飞(1984—),男,通信作者,教授,博士生导师,主要研究方向:电力系统安全性与稳定性、综合能源集成与应用、电动汽车并网规划与运行控制。E-mail: yunfeimu@tju.edu.cn
吴志军(1997—),男,硕士研究生,主要研究方向:综合能源系统低碳运行。E-mail: 2021234422@tju.edu.cn
王从善(1990—),男,博士研究生,主要研究方向:综合能源系统规划与运行。E-mail: cs_wang@ tju.edu.cn
1.Key Laboratory of Smart Grid of Ministry of Education (Tianjin University), Tianjin300072, China;2.Key Laboratory of Smart Energy & Information Technology of Tianjin Municipality (Tianjin University), Tianjin300072, China
Park-level integrated energy system (PIES) faces multiple impacts from the long-term uncertainty of carbon trading price, energy price and the short-term uncertainty of renewable energy when participating in carbon trading. How to optimize the configuration of device capacity for PIES under the limited total cost budget to improve the robustness of the system, that is, the adaptability to deal with uncertainty fluctuations needs to be further studied. Therefore, an optimal configuration method based on information gap decision theory (IGDT)-utility entropy is proposed. First, a coupling model of multi-energy flow and carbon trading volume based on energy hub is established to describe the coupling relationship between carbon trading volume and multi-energy flow. Secondly, a deterministic optimal configuration model for PIES is established to obtain the baseline value of the total optimal configuration cost, and the ability of PIES decision makers to accept additional investment is further considered to determine the total cost budget limit. For the two types of uncertainty, IGDT is used to deal with the long-term uncertainty of carbon trading price and energy price, and utility entropy is used to simulate the short-term uncertainty of wind and photovoltaic power output. Then, the robustness coefficient is introduced to describe the adaptability of PIES to uncertainty fluctuations. On the premise that the total cost does not exceed the budget limit, an optimal configuration model aiming at maximizing the robustness coefficient is established to improve the adaptability of PIES to uncertainty fluctuations, and the optimal configuration scheme under the total cost budget is obtained. Finally, a PIES in northern China is taken as a case to verify the effectiveness of the proposed optimal configuration method for PIES.
[1] | 穆云飞,吴志军,王从善,等.基于IGDT-效用熵的园区综合能源系统优化配置方法[J].电力系统自动化,2024,48(23):41-53. DOI:10.7500/AEPS20230828010. MU Yunfei, WU Zhijun, WANG Congshan, et al. Optimal Configuration Method for Park-level Integrated Energy System Based on Information Gap Decision Theory-Utility Entropy[J]. Automation of Electric Power Systems, 2024, 48(23):41-53. DOI:10.7500/AEPS20230828010. |