半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于动态哈夫模型及双边匹配的电动汽车充电引导策略
作者:
作者单位:

1.北京交通大学电气工程学院,北京市 100044;2.中交机电工程局有限公司,北京市 100012

摘要:

由于充电站中充电桩数目有限且电动汽车充电耗时长,陆续产生充电需求的各电动汽车用户存在对充电站资源的竞争。这不仅增加了用户排队概率,降低了充电站收益和利用率,而且使得用户在充电站规模、价格、评价等方面的个性化需求得不到充分满足。为此,提出了一种动态哈夫模型与双边匹配方法相结合的电动汽车充电引导策略。首先,对充电站客流、充电订单和充电桩详情等真实数据集进行大数据挖掘,分析公共充电站用户的充电站选择偏好和充电行为特征;然后,基于动态哈夫模型,结合用户充电站选择偏好量化不同区域用户前往不同充电站的概率,并生成充电站推荐列表;最后,将前景理论与双边匹配策略相结合,进行充电引导。算例分析表明,所提策略大幅降低了用户的排队概率,在满足用户个性化充电需求的同时,保障了充电站利益。

关键词:

基金项目:

国家自然科学基金资助项目(52277073)。

通信作者:

作者简介:

苏粟(1981—),女,博士,教授,博士生导师,主要研究方向:电动汽车与电网互动、V2G能量管理策略。E-mail:ssu@bjtu.edu.cn
王建祥(1999—),男,硕士研究生,主要研究方向:电动汽车用户充电引导。E-mail:21121496@bjtu.edu.cn
王磊(1982—),男,通信作者,高级工程师,主要研究方向:电力储能技术。E-mail:89402306@qq.com


Guidance Strategy for Electric Vehicle Charging Based on Dynamic Huff Model and Bilateral Matching
Author:
Affiliation:

1.School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China;2.CCCC Mechanical & Electrical Engineering Co., Ltd., Beijing 100012, China

Abstract:

Due to the limited number of charging piles in charging stations and the long charging time for electric vehicles, there is competition for charging station resources among various electric vehicle users who are successively generating charging demand. This not only increases the queuing probability of users, reduces the revenue and utilization rate of the charging station, but also makes the users’ personalized needs in terms of charging station size, price, evaluation not fully satisfied. For this reason, a guidance strategy for electric vehicle charging is proposed that combines the dynamic Huff model with the bilateral matching method. First, the big data mining is performed on real data sets such as charging station passenger flow, charging order, and charging pile profile to analyze the charging station selection preferences and charging behavior characteristics of public charging station users. Then, based on the dynamic Huff model, the probability of users going to different charging stations in different regions is quantified by combining the users’ selection preferences for charging stations, and the charging station recommendation lists are generated. Finally, the prospect theory is combined with the bilateral matching strategy for charging guidance. Case analysis shows that the proposed strategy significantly reduces the queuing probability of users, meeting their personalized charging needs while ensuring the interests of charging stations.

Keywords:

Foundation:
This work is supported by National Natural Science Foundation of China (No. 52277073).
引用本文
[1]苏粟,王建祥,王磊,等.基于动态哈夫模型及双边匹配的电动汽车充电引导策略[J].电力系统自动化,2024,48(7):181-189. DOI:10.7500/AEPS20230731008.
SU Su, WANG Jianxiang, WANG Lei, et al. Guidance Strategy for Electric Vehicle Charging Based on Dynamic Huff Model and Bilateral Matching[J]. Automation of Electric Power Systems, 2024, 48(7):181-189. DOI:10.7500/AEPS20230731008.
复制
支撑数据及附录
分享
历史
  • 收稿日期:2023-07-31
  • 最后修改日期:2023-10-25
  • 录用日期:2023-10-27
  • 在线发布日期: 2024-04-01
  • 出版日期: