半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于强化学习环境设计策略的电动汽车充电路径规划
作者:
作者单位:

1.东南大学自动化学院,江苏省南京市 210096;2.东南大学复杂工程系统测量与控制教育部重点实验室,江苏省南京市 210096;3.东南大学电气工程学院,江苏省南京市 210096

摘要:

针对电动汽车充电路径规划问题,提出了一种适用于强化学习的环境建模方法。该方法基于城市道路网格与充电站地理位置分布等现实情况,将电动汽车的基本行驶路径分为三段进行表达。在三段式表达方法的基础上,提出了状态空间、动作空间、状态转移与奖励函数的设计方案,将充电路径规划建模为马尔可夫决策过程,并利用Q学习方法与深度Q网络(DQN)方法求解。实验结果表明,基于三段式表达法的强化学习环境设计方案具有可解性与可迁移性,考虑了电动汽车从道路驶向充电站过程中的降速转弯等现实场景,同时将充电动作简化为一种行驶方向选择,提升了基于Q学习与DQN的强化学习算法效率。

关键词:

基金项目:

国家重点研发计划资助项目(2021YFB2501600)。

通信作者:

作者简介:

宋宇航(2001—),男,硕士研究生,主要研究方向:智能决策与控制。E-mail:umi_yhsong@seu.edu.cn
陈宇帆(2000—),男,硕士研究生,主要研究方向:电动汽车负荷预测。E-mail:yufchen@sina.com
魏延岭(1985—),男,通信作者,博士,教授,主要研究方向:智能决策与控制、自主无人系统。E-mail:yanlingwei@seu.edu.cn


Charging Path Planning for Electric Vehicles Based on Reinforcement Learning Environment Design Strategy
Author:
Affiliation:

1.School of Automation, Southeast University, Nanjing 210096, China;2.Key Laboratory of Measurement and Control of Complex System of Engineering,Southeast University, Nanjing 210096, China;3.School of Electrical Engineering, Southeast University, Nanjing 210096, China

Abstract:

An environmental modeling method suitable for reinforcement learning is proposed for the charging path planning problem of electric vehicles. Based on the actual situation of urban road network and geographical distribution of charging stations, this method divides the basic driving path of electric vehicles into three segments for representation. Based on the three-segment expression method, the design scheme of state space, action space, state transition, and reward function is proposed. The charging path planning is modeled as a Markov decision process, and solved by the Q learning method and the deep Q network (DQN) method. The experimental results show that the design scheme of the reinforcement learning environment based on the three-segment expression method is solvable and portable. It takes into account the realistic scenarios such as the deceleration and turning of electric vehicles in the process of driving from the road to the charging station, and simplifies the charging action into a driving direction choice, which improves the efficiency of the reinforcement learning algorithm based on Q learning and DQN.

Keywords:

Foundation:
This work is supported by National Key R&D Program of China (No. 2021YFB2501600).
引用本文
[1]宋宇航,陈宇帆,魏延岭,等.基于强化学习环境设计策略的电动汽车充电路径规划[J].电力系统自动化,2024,48(11):184-196. DOI:10.7500/AEPS20230621004.
SONG Yuhang, CHEN Yufan, WEI Yanling, et al. Charging Path Planning for Electric Vehicles Based on Reinforcement Learning Environment Design Strategy[J]. Automation of Electric Power Systems, 2024, 48(11):184-196. DOI:10.7500/AEPS20230621004.
复制
支撑数据及附录
分享
历史
  • 收稿日期:2023-06-21
  • 最后修改日期:2023-11-16
  • 录用日期:2023-11-20
  • 在线发布日期: 2024-05-31
  • 出版日期: