1.长沙理工大学电气与信息工程学院,湖南省长沙市 410004;2.中国电力科学研究院有限公司,北京市 100192;3.国网宁夏电力有限公司营销服务中心(计量中心),宁夏回族自治区银川市 750001
低压用户窃电导致线损电量增加,对台区线损异动进行归因分析是识别窃电用户的有效途径。低压用户通信异常多发,可导致用电信息采集系统主站数据失真,易误导窃电检测。利用配变终端可就地完整准确采集台区数据的特点,提出基于边缘计算的低压用户窃电检测方法。首先,在通信正常和异常的条件下,分析台区窃电用户用电量与线损电量的关联关系;然后,在配变终端窃电检测模块中对真实的台区线损和用户用电量进行归因分析来识别窃电用户;最后,基于高损台区实际数据的仿真分析,验证了所提方法相比于在主站侧采用异常数据以及采用不同缺失数据填补算法修复后的数据进行窃电检测时的优势。
国家自然科学基金资助项目(51777015);国家重点研发计划资助项目(2018YFB0904903);湖南省教育厅重点项目(19A011)。
郑应俊(1997—),男,硕士研究生,主要研究方向:电力系统大数据应用分析。E-mail:952264795@qq.com
杨艺宁(1996—),女,硕士,工程师,主要研究方向:智能用电与用电异常检测。E-mail:yangyn_2012@163.com
舒一飞(1989—),男,工程师,主要研究方向:电力计量数据挖掘分析与应用。E-mail:240374472@qq.com
苏盛(1975—),男,通信作者,教授,博士生导师,主要研究方向:电力系统网络安全防护与智能用电。E-mail:eessheng@163.com
1.College of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410004, China;2.China Electric Power Research Institute, Beijing 100192, China;3.Marketing Service Center of State Grid Ningxia Electric Power Co., Ltd. (Metrology Center), Yinchuan 750001, China
Electricity theft of low-voltage users increases the line loss power. It is an effective way to identify the electricity theft users by the attribution analysis of line loss variation in distribution area. The frequent communication anomaly of low-voltage users may lead to the distortion of the data in the main station of the electricity information acquisition system, which tends to mislead the electricity theft detection. Using the characteristic that the distribution transformer terminal can collect the distribution area data completely and accurately, an electricity theft detection method for low-voltage users based on edge computing is proposed. Firstly, the correlation between electricity consumption and line loss power of electricity theft users in distribution area is analyzed under normal and abnormal communication conditions. Then, the attribution analysis is carried out on the line loss power and electricity consumption in the real distribution of the electricity theft detection module in distribution transformer terminal to identify electricity theft users. Finally, based on the simulation analysis of the actual data in the high-loss distribution area, the advantages of the proposed method compared with electricity theft detection using the abnormal data on the main station side and the data restored by different missing data filling algorithms are verified.
[1] | 郑应俊,杨艺宁,舒一飞,等.基于边缘计算的低压用户窃电检测[J].电力系统自动化,2022,46(11):111-120. DOI:10.7500/AEPS20210624008. ZHENG Yingjun, YANG Yining, SHU Yifei, et al. Electricity Theft Detection for Low-voltage Users Based on Edge Computing[J]. Automation of Electric Power Systems, 2022, 46(11):111-120. DOI:10.7500/AEPS20210624008. |