半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于粒子群优化算法的孤岛微电网电压不平衡补偿协调控制
作者:
作者单位:

1.合肥工业大学电气与自动化工程学院,安徽省 合肥市 230009;2.光伏系统教育部工程研究中心(合肥工业大学),安徽省 合肥市 230009

作者简介:

通讯作者:

基金项目:

国家自然科学基金资助项目(51541703)。


Coordinated Control of Voltage Unbalance Compensation in Islanded Microgrid Based on Particle Swarm Optimization Algorithm
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China;2.Research Center for Photovoltaic System Engineering of Ministry of Education (Hefei University of Technology), Hefei 230009, China

Fund Project:

This work is supported by National Natural Science Foundation of China (No. 51541703).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    微电网系统孤岛运行条件下,其系统电压完全由网内众微电网逆变器协调运行提供支撑,微电网逆变器控制性能将决定网内供电电压质量的优劣。考虑到微电网中大量单相负荷的存在,系统负荷实则表征为不平衡,这一不平衡特点容易引起系统电压的不平衡。针对这一问题,以同时兼顾微电网逆变器端口电压及公共连接点(PCC)电压不平衡度控制为目标,从分析电压不平衡机理入手,提出一种基于粒子群优化算法的负序电压补偿算法。补偿算法以逆变器端口电压和PCC电压不平衡度作为约束条件建立目标函数,同时考虑逆变器间的环流问题,在实现逆变器端口及PCC电压不平衡控制的同时减小逆变器间的环流。最后,分别基于MATLAB及某电力电子实时仿真平台搭建了系统仿真模型和半实物实时仿真模型,仿真及实验结果验证了所提方法的正确性和有效性。

    Abstract:

    The system voltage of microgrid operating in the islanded mode is fully supported by the coordinated operation of all microgrid inverters in the network. Thus, the supply voltage quality of the microgrid is highly dependent on the control performance of microgrid inverters. Due to the existence of a large number of single-phase loads, the system load usually features unbalance, which is easy to cause system voltage unbalance. In view of this problem, aiming at controlling the unbalance degrees of voltages both at the inverter port and the point of common coupling (PCC), this paper proposes a compensation algorithm of negative voltage based on the particle swarm optimization (PSO) algorithm, which starts from the deep analysis of unbalance mechanism. The unbalance degrees of voltages at inverter port and PCC are taken as the constraint conditions to establish the objective function. At the same time, the circulating current problem between inverters is also taken into account. Consequently, the circulating current among microgrid inverters is suppressed while the voltage unbalance degree is controlled. Finally, based on MATLAB and a power electronic real-time simulation platform, the system simulation model and the semi-physical real-time simulation model are built. The simulation and experimental results verify the correctness and effectiveness of the proposed method.

    表 1 Table 1
    图1 未进行负序电压补偿的负序等值电路Fig.1 Negative-sequence equivalent circuit without negative-sequence voltage compensation
    图2 负序电压补偿下的负序等值电路Fig.2 Negative-sequence equivalent circuit with negative-sequence voltage compensation
    图3 不平衡电压补偿控制框图Fig.3 Block diagram of unbalance voltage compensation control
    图4 端口电压和PCC电压不平衡度补偿仿真结果Fig.4 Simulation results of unbalance compensation for voltages at the port and PCC
    图5 端口电压和PCC电压不平衡度补偿实验波形与补偿后C相环流波形Fig.5 Experimental waveforms of unbalance compensation for voltages at the port and PCC and waveforms of C-phase circulating current after compensation
    图 三相三线制不平衡负载Fig. Unbalanced load equivalent circuit in three-phase three-wire system
    图 PSO算法优化负序电压参考指令流程图Fig. Flow chart of reference instruction optimization of negative sequence voltage based on PSO algorithm
    图 2台逆变器d轴参考指令Fig. Negative sequence voltage reference instruction
    图 2台逆变器q轴参考指令Fig. Negative sequence voltage reference instruction
    图 2台逆变器的有功功率Fig. Active power of two inverters
    图 2台逆变器的环流Fig. Circulation between two inverters
    图 补偿前端口电压Fig. Port voltage before compensation
    图 补偿后端口电压Fig. Port voltage after compensation
    图 补偿前PCC处电压Fig. PCC point voltage before compensation
    图 补偿后PCC处电压Fig. PCC point voltage after compensation
    图 2台逆变器d轴负序电压参考指令Fig. Negative sequence voltage reference instruction
    图 2台逆变器q轴负序电压参考指令Fig. Negative sequence voltage reference instruction
    图 2台逆变器的环流Fig. Circulation between two inverters
    图 实验结构图Fig. Overview of the test bench
    图 补偿后端口电压Fig. Port voltage after compensation
    图 补偿后PCC处电压Fig. PCC point voltage after compensation
    图 2台逆变器d轴负序电压参考指令Fig. Negative sequence voltage reference
    图 2台逆变器q轴负序电压参考指令Fig. Negative sequence voltage reference
    图 2台逆变器的有功功率Fig. Active power of two inverters
    图 2台逆变器的无功功率Fig. Reactive power of two inverters
    图 2台逆变器C相电流及环流波形Fig. Phase C current and circulation waveform of two inverters
    图 补偿前端口电压Fig. Port voltage before compensation
    图 补偿前PCC处电压Fig. PCC point voltage before compensation
    图 补偿后端口电压Fig. Port voltage after compensation
    图 补偿后PCC处电压Fig. PCC point voltage after compensation
    图 2台逆变器d轴负序电压参考指令Fig. Negative sequence voltage reference instruction
    图 2台逆变器q轴负序电压参考指令Fig. Negative sequence voltage reference instruction
    图 2台逆变器的有功功率Fig. Active power of two inverters
    图 2台逆变器的无功功率Fig. Reactive power of two inverters
    图 容量比为1:2时补偿后端口电压Fig. Port voltage after compensation when the ratio of capacity is 1:2
    图 容量比为1:2时补偿后PCC处电压Fig. PCC point voltage after compensation when the ratio of capacity is 1:2
    图 2台逆变器容量为1:2时的有功功率Fig. The active power of two inverters when the ratio of capacity is 1:2
    图 2台逆变器容量为1:2时的无功功率Fig. The reactive power of two inverters when the ratio of capacity is 1:2
    图 2台逆变器的无功功率Fig. Reactive power of two inverters
    图 实验平台Fig. Experimental platform
    参考文献
    相似文献
    引证文献
引用本文

赖纪东,谢天月,苏建徽,等.基于粒子群优化算法的孤岛微电网电压不平衡补偿协调控制[J/OL].电力系统自动化,http://doi.org/10.7500/AEPS20200108004.
LAI Jidong,XIE Tianyue,SU Jianhui,et al.Coordinated Control of Voltage Unbalance Compensation in Islanded Microgrid Based on Particle Swarm Optimization Algorithm[J/OL].Automation of Electric Power Systems,http://doi.org/10.7500/AEPS20200108004.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-01-08
  • 最后修改日期:2020-06-20
  • 录用日期:2020-04-14
  • 在线发布日期:
  • 出版日期: