半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于轨迹模式空间解耦及模式能量序列的振荡分析:(二)算法及应用
作者:
作者单位:

1. 南京理工大学自动化学院, 江苏省南京市 210094; 2. 南瑞集团有限公司(国网电力科学研究院有限公司), 江苏省南京市 211106; 3. 智能电网保护和运行控制国家重点实验室, 江苏省南京市 211106; 4. 国家电网有限公司国家电力调度控制中心, 北京市 100031

作者简介:

通讯作者:

基金项目:

国家电网公司总部科技项目“基于轨迹特征根的电力系统振荡基础理论研究、算法开发及应用验证”


Oscillation Analysis Based on Trajectory Modes Decoupled in Space and Mode-energy-sequence Part Two Algorithm and Application
Author:
Affiliation:

1. School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China; 2. NARI Group Corporation(State Grid Electric Power Research Institute), Nanjing 211106, China; 3. State Key Laboratory of Smart Grid Protection and Control, Nanjing 211106, China; 4. National Electric Power Dispatching and Control Center, State Grid Corporation of China, Beijing 100031, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    基于状态空间中的模式解耦,及在时域中按其摆次分段,分析振荡能量的时序演化特性。利用互补群惯量中心—相对运动(CCCOI-RM)保稳变换,将非简谐振荡的多机轨迹严格映射为一系列映象上的时变单机系统轨迹,并通过后者在逐次摆动期间振荡能量的演变来刻画原多机系统的振荡行为,在时变单机映象系统的外力—位置平面上分析振荡能量的时空转换,量化其非保守性。文中分别以映象系统轨迹上的动态中心点(DCP)处的动能,及最远点(FEP)处的势能来反映该模式在过去半摆中的振荡总能量;以两者组成的能量序列反映该空间振荡模式的时变性。通过理论分析及数值仿真证实:在描述哈密顿单机系统振荡行为时,轨迹摆次能量序列与特征根分析完全一致,而在分析非哈密顿的单机系统或一般的多机系统时,轨迹摆次能量序列可以克服平衡点特征根的众多缺陷。

    Abstract:

    This paper analyzes the time evolution of oscillation energy based on the trajectory modes decoupled in state space and the swings divided in time domain. The trajectory of multi-machine system, which is non-harmonic oscillation, can be mapped into a series of trajectories for time-varying image system through the complementary-cluster center-of-inertial relative-motion(CCCOI-RM)transform, so the oscillation behavior of the multi-machine system is described by the oscillation energy variation of the successive swing. Besides, the non-conservative can be quantified through analyzing the time-space variation of the oscillation energy on the force-position plane. In this paper, the kinetic energy at the dynamic center point(DCP)and the potential energy at the far end point(FEP)are both used to reflect the oscillation energy in the past half swing. Therefore, the sequence of them can reflect the time-varying characteristic of the spatial oscillation mode. After that, through theoretical analysis and numerical simulation, the consistency between the trajectory swing energy sequence and the eigenvalue system is proved when they are used to describe the oscillation behavior of Hamilton one machine infinite-bus(H-OMIB), but the trajectory swing energy sequence can also be used to overcome many defects of the eigenvalue in the non H-OMIB or general multi-machine system.

    参考文献
    相似文献
    引证文献
引用本文

刘庆龙,薛禹胜,陈国平.基于轨迹模式空间解耦及模式能量序列的振荡分析:(二)算法及应用[J].电力系统自动化,2019,43(13):21-28. DOI:10.7500/AEPS20190430034.
LIU Qinglong, XUE Yusheng,CHEN Guoping.Oscillation Analysis Based on Trajectory Modes Decoupled in Space and Mode-energy-sequence Part Two Algorithm and Application[J].Automation of Electric Power Systems,2019,43(13):21-28. DOI:10.7500/AEPS20190430034.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-04-30
  • 最后修改日期:2019-05-27
  • 录用日期:2019-05-17
  • 在线发布日期: 2019-05-27
  • 出版日期: