半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于改进鲁棒自适应UKF的配电网动态状态估计方法
作者:
作者单位:

1.北京交通大学电气工程学院,北京市 100044;2.中国南方电网科学研究院有限责任公司,广东省广州市 510080

作者简介:

王玉彬(1994—),男,硕士研究生,主要研究方向:电力系统状态估计、电力线路参数辨识。E-mail:16121538@bjtu.edu.cn
夏明超(1976—),男,通信作者,博士,博士生导师,主要研究方向:智能配用电、微电网等。E-mail:huangjie1@ sgepri.sgcc.com.cn
李鹏(1973—),男,博士,教授级高级工程师,主要研究方向:智能配用电、微电网及综合能源系统等。E-mail:lipeng@csg.cn

通讯作者:

基金项目:

国家重点研发计划资助项目(2017YFB0902902)。


Dynamic State Estimation Method of Distribution Network Based on Improved Robust Adaptive Unscented Kalman Filter
Author:
Affiliation:

1.School of Electrical Engineering Beijing Jiaotong University, Beijing 100044, China;2.Electric Power Research Institute of China Southern Power Grid Company Limited, Guangzhou 510080, China

Fund Project:

This work is supported by National Key R&D Program (No. 2017YFB0902902).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    配电网动态状态估计中状态方程的过程噪声统计参数是未知而且时变的,因此在状态估计过程中需要在线对过程噪声统计参数进行实时估计,而且不准确的噪声参数将会导致无迹卡尔曼滤波器的滤波性能下降甚至滤波发散。文中研究了基于改进鲁棒自适应无迹卡尔曼滤波器的配电网动态状态估计方法,其噪声参数统计估值器由一个有偏的和一个无偏的估值器组成,可以提高在状态估计过程中噪声参数估计的准确性,同时确保过程噪声方差矩阵的半正定性,从而保证算法的鲁棒性。通过对IEEE 33节点系统进行仿真验证,结果表明所提方法在系统平稳运行、负荷发生剧烈变动或者初始噪声参数值设置不当的情况下,均能保证较高的状态估计精度。

    Abstract:

    The process noise statistical parameters of state equations are unknown and time-varying in the dynamic state estimation of distribution network. Thus, the real-time estimation of the process statistical parameters is essential for the state estimation process. Inaccurate noise parameters will cause the decrease of performance or divergent filtering of unscented Kalman filter. In this paper, a dynamic state estimation method for distribution network based on improved robust adaptive unscented Kalman filter is proposed. The noise parameter statistical estimator in the method is made up of a biased and an unbiased estimator, which will improve the accuracy of noise parameters estimation during the state estimation process as well as guarantee the semi-positive definiteness of process noise variance matrix. As a result, this method can ensure the robustness of the algorithm. The simulations carried out on the IEEE 33-node system demonstrates that the proposed method can ensure high precision of state estimation when the system runs smoothly, the load changes violently or the initial noise parameters are set improperly.

    表 1 相对误差均方根误差平均值Table 1 Average value of root mean square errorof relative error
    图1 第28节点电压相角估计结果Fig.1 Estimation results of voltage phase anglefor node 28
    图2 第28节点电压幅值估计结果Fig.2 Estimation results of voltage amplitude
    图3 相角相对误差的均方根误差Fig.3 Root mean square error of relative error
    图4 幅值相对误差的均方根误差Fig.4 Root mean square error of relative
    图5 不同Q0下相对误差的均方根误差对比图Fig.5 Contrast diagram of root mean square error of
    参考文献
    相似文献
    引证文献
引用本文

王玉彬,夏明超,李鹏,等.基于改进鲁棒自适应UKF的配电网动态状态估计方法[J].电力系统自动化,2020,44(1):92-100. DOI:10.7500/AEPS20190329004.
WANG Yubin,XIA Mingchao,LI Peng,et al.Dynamic State Estimation Method of Distribution Network Based on Improved Robust Adaptive Unscented Kalman Filter[J].Automation of Electric Power Systems,2020,44(1):92-100. DOI:10.7500/AEPS20190329004.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-03-29
  • 最后修改日期:2019-05-19
  • 录用日期:
  • 在线发布日期: 2020-01-04
  • 出版日期: