半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于图规则化低秩矩阵恢复的用电数据修复与异常检测
作者:
作者单位:

1. 中国南方电网有限责任公司, 广东省广州市 510000; 2. 国电南瑞科技股份有限公司, 江苏省南京市 211106; 3. 云南电网有限责任公司德宏供电局, 云南省德宏市 678400

作者简介:

通讯作者:

基金项目:


Refinement and Anomaly Detection for Power Consumption Data Based on Recovery of Graph Regularized Low-rank Matrix
Author:
Affiliation:

1. China Southern Power Grid Company Limited, Guangzhou 510000, China;2.NARI Technology Co., Ltd., Nanjing 211106, China;3. Dehong Power Supply Bureau, Yunnan Power Grid Co., Ltd., Dehong 678400, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对电力系统用电数据中的记录误差与异常用电,提出一种基于图规则化低秩矩阵恢复的电力系统用电记录修复与异常检测算法。该方法从用户用电时空矩阵的低秩稀疏分解出发,结合电网拓扑结构与用户相关性的规则化调整,获取修复后的用电数据和异常用户。该方法同时兼顾了用户用电的周期性与异常用户的差异性特点。实验分析表明,与相关方法相比,所提方法在用电数据修复与异常用电模式检测的多项评价标准下均取得了更好的准确性和鲁棒性。

    Abstract:

    Aiming at the error and abnormal consumption data in power system, this paper proposes a record data refinement and anomaly detection algorithm for power system based on recovery of graph regularized low-rank matrix. The method starts from the low-rank sparse decomposition of the electricity consumption space-time matrix, and integrates the grid topology and the user correlation to adjust the matrix decomposition results, so as to obtain the repaired power consumption data and abnormal users. The method takes into account both the periodicity of users and the difference of abnormal users. Compared with the related methods, the experimental analysis shows that the proposed method achieves better accuracy and robustness under multiple evaluation criteria of electrical data refinement and abnormal power mode detection.

    参考文献
    相似文献
    引证文献
引用本文

梁寿愚,方文崇,王瑾,等.基于图规则化低秩矩阵恢复的用电数据修复与异常检测[J].电力系统自动化,2019,43(21):221-228. DOI:10.7500/AEPS20181122008.
LIANG Shouyu, FANG Wenchong, WANG Jin,et al.Refinement and Anomaly Detection for Power Consumption Data Based on Recovery of Graph Regularized Low-rank Matrix[J].Automation of Electric Power Systems,2019,43(21):221-228. DOI:10.7500/AEPS20181122008.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-11-22
  • 最后修改日期:2019-06-05
  • 录用日期:2019-04-22
  • 在线发布日期: 2019-06-04
  • 出版日期: